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On an f(R) Theory of Gravity

s. n. pandey

Abstract: We attempted to develop a higher-order theory of gravitation based on a
Lagrangian density consisting of a polynomial of scalar curvature, R to obtain gravitational
wave equations conformally flat. In this theory, it is desirable to study the gravitational field
of a spherically symmetric mass distribution and the motion of particle to bring out the effect
of modification of general relativity. In the context it is found that the spherically symmetric
metric is not asymptotically flat as r tends to infinity and, in case of orbital motion of the
planet, it turns out that it differs from Einstein case by having an additional term, though of
small magnitude, in the equation. This term does not contribute to produce observable effect
as such the precession of the perihelion is consistent with observation.
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INTRODUCTION

We investigated an f(R) theory of gravity in
the context of general relativity. However, this
theory in the framework of Palatini approach as
solution to the problem of the observed accel-
erated expansion of the universe is discussed in
Capozziello et al. by considering two physically
motivated popular choices for f(R), that is,
power law, f(R) = βRN and logarithmic,
f(R) = α logR. This give rise to cosmolog-
ical models comprising only standard matter
and undergoing a present phase of accelerated
expansion but the deceleration parameter is
higher than what is measured in the concor-
dance ΛCDM model. The ΛCDM model is also
plagued by many problems on different scales.
If interpreted as vacuum energy, Λ is up to 120
orders of magnitude smaller than the predicted
value.

In this framework, there is also the attrac-
tive possibility to consider the Einstein gen-
eral relativity as a particular case of a more
fundamental theory. This is the underlying
philosophy of what are referred to as f(R)
theories. In this case, Friedmann equations
have to be given away in favour of a modified
set of cosmological equations that are obtained
by varying a generalized gravity Lagrangian
where the scalar curvature R has been replaced
by a generic function f(R). The usual general
relativity is recovered in the limit f(R) = R,
while completely different results may be ob-
tained for other choices of f(R). While in the

weak field limit the theory should give the usual
Newtonian gravity, at cosmological scales there
is an almost complete freedom in the choice of
f(R). This leaves open the way to a wide range
of models.

On the other hand, the non-conformal in-
variance of gravitational waves which are an
inevitable consequence of Einstein theory of
gravitation motivated us Pandey 1983, Pandey
1988, Grishchuk 1977 to modify the Einstein
theory by choosing f(R) as a polynomial in R
of a finite number of terms without associating
any other field except gravitation. Therefore,
we took the Lagrangian in the form

L = R+

N
∑

n=2

Cn{(l2R)n/6l2}

or equivalently L = R+

N
∑

n=2

anR
n (1)

where l is the characteristic length and Cn are
the dimensionless coefficients corresponding to
n introduced to nullify the manifestation of
gravitation. The values of n = 0 and 1 result
in Hilbert Lagrangian, that is, Einstein theory.
Therefore n begins from n = 2 onwards.

This choice of f(R) should not be disturbing
because it is an observational fact that our
universe is not asymptotically flat. There is
enough matter on our past light cone to cause
it to refocus. The total energy of the universe is
exactly zero, the positive energy of gravitation
and the matter particle being exactly compen-
sated by the negative gravitational potential
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energy. That is why the universe is expanding.
Also the unitarity is not well defined except
in scattering calculations in asymptotically flat
spaces.

Therefore, the paper is organised as follows.
The field equations of this f(R) theory under
consideration are given in section 2. Section 3
deals with an attempt to find the gravitational
field surrounding a spherically symmetric mass
distribution at rest while the equation of motion
of a particle in this field is the subject matter of
section 4. In the last section we give concluding
remarks on the results of this f(R) theory.

FIELD EQUATIONS

A quite interesting and fascinating scenario pre-
dicts that standard matter is the only ingredient
of the cosmic pie as it is indeed observed, but
the Einsteinian general relativity breaks down
at the present small curvature scale. As a
result we generalize the action as Pandey 1983,
Grishchuk 1977, Pandey 2001

A =

∫

(L/κ+ Ls) d4x (2)

with Ls standing for the source Lagrangian
density to obtain the graviton equations in the
background of Friedmann universe having scale
factor a(η) as:

µ′′ + µ[n2 − a′′/a] = 0 (3)

An application of variational principle to this
action yields the field equations as:

Ruv − guvR
2

+

N
∑

n=2

nanR
n−1

[

Ruv −
Rguv
2n

− n(n− 1)

R
(R;u;v − guv2R)

− (n− 1)(n− 2)

R2
(R;uR;v − guvR;αR

;α)

]

= κTuv (4)

Here rTuv =
√

(−g)(δLs/δguv) (eqn. 5) stands
for the energy-momentum tensor responsible for
the production of the gravitational potential
guv. It can easily be seen that T vu;v = 0 (eqn. 6)

holds for these field equations as it is in case of
Einstein general relativity. Again it should be
noted that 1 + nanR

n−1 6= 0 or equivalently,

1 + 2a2R+ 3a3R
2 + 4a4R

3 + . . .

+NanR
N−1 6= 0 (7)

because of the Cauchy problem. This fact
is important in studying the completeness of
geodesic in higher-order theory of gravitation.

SPHERICALLY SYMMETRIC FIELD

It is interesting to know in this theory of gravity
the gravitational field surrounding a spherically
symmetric mass distribution at rest. Obviously
the gravitational field would have spherical
symmetry. We require the field to be static,
that is, it should be both time independent and
unchanged by time reversal. So, we consider

ds2 = eN(r) dt2 − eL(r) dr2 − r2 dθ2

− r2 sin2 θ dφ2 (8)

where functions N(r) and L(r) are to be de-
termined by using the field equations of f(R)
gravity. In vacuum where Tuv = 0, we get

R0
0 −R/2 = R1

1 −R/2 = R2
2 − R/2

= R3
3 −R/2 = Ψ(r) (9)

where Ψ(r) =

N
∑

n=2

an(2− n/2)Rn

1 +

N
∑

n=2

nanR
n−1

(10)

The functions N(r) and L(r) are seen to satisfy
from R0

0 − R/2 = R1
1 − R/2 N(r) = −L(r)

(eqn. 11). Again R0
0 − R/2 = Ψ(r) (eqn. 12).

So we find

e−L = 1 +
k

r
+

1

r

∫

r2Ψ(r) dr (13)

where k is a constant which can be deter-
mined from the fact that at large distances the
g00 component of the metric must conform to
Newtonian potential, that is 1 − 2ϕ. If M is
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the central mass then k = −2MG (eqn. 14).
leading to

ds2 =

(

1− 2MG

r
+

1

r

∫

r2Ψ(r) dr

)

dt2

− dr2/
(

1− 2MG

r
+

1

r

∫

r2Ψ(r) dr

)

− r2 dθ2 − r2 sin2θ dφ2 (15)

It is to be noted that M is the total mass
of the system. The mass energy contributed by
the gravitational field is to be included in M .
Clearly, in view of the principle of equivalence,
the gravitational mass of the system which
produces the field (15) is, in fact, equal to the
inertial mass of the system The other equations
in (9) are satisfied by equations (11) and (13).

Now we turn our attention towards equation
(10). The denominator of equation (10) is
non-vanishing due to equation (7) and can,
therefore, be expanded in powers of r. Thus

Ψ(r) = b0 + b1r + b2r
2 + b3r

3 + . . . (16)

Since the contribution of Ψ(r) is very small,
then

1

r

∫

r2Ψ(r) dr =
b0r

2

3
+
b1r

3

4
+
b2r

4

5
+ . . . (17)

yields eN = e−L ≈ 1− 2MG

r
+
b0r

2

3
(18)

by retaining only the first term in equation (17).
Therefore the metric (8) becomes

ds2 =

(

1− 2MG

r
+
b0r

2

3

)

dt2

− dr2/
(

1− 2MG

r
+
b0r

2

3

)

− r2 dθ2 − r2 sin2θ dφ2 (19)

It can easily be seen that the metric (19)
is not asymptotically flat due to the presence
of term b0r

2/3. Again, it can be seen that in

this f(R) theory of gravitation the space-time,
by virtue of equation (7), will no longer be
asymptotically flat at larger distances. Again
the appearance of term b0r

2/3 is worth com-
paring with the Schwarzschild solution, that is,

ds2 =

(

1− 2MG

r
− λr

2

3

)

dt2

− dr2/
(

1− 2MG

r
− λr

2

3

)

− r2 dθ2 − r2 sin2θ dφ2 (19a)

of the Einstein field equation with cosmological
constant, that is, Rvu − (1/2)δvuR = −Λδvu.
As such the contribution due to modification
is behaving as a cosmological constant which
is very small and can be taken to correspond
to a cosmological correction to the Newtonian
potential. For the motion of planets the cos-
mological correction is completely insignificant.
Further, even if we include the second term or
more of equation (17), the qualitative picture,
for instance the asymptotic flatness, remains
unchanged. Quantitatively however the values
of the metric potentials will differ.

EQUATION OF MOTION

The equation of motion of a particle in a
gravitational field is

d2xµ

dτ2
+ Γµαβ

dxα

dτ

dxβ

dτ
= 0 (20)

and the quantity

gik
dxi

dτ

dxk

dτ
= constant = 1 (21)

is a constant of motion. Therefore it can be
regarded as a first integral of the equation of
motion.

Now we consider the equation of motion of
a particle or planet in the gravitational field of
(8). They are:

ẗ+N ′ṙṫ = 0 (22)
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r̈ +
1

2
N ′eN−Lṫ2 +

1

2
L′ṙ2

− re−Lθ̇2 − r2 sin2 θe−Lφ̇2 = 0 (23)

θ̈ +
2ṙθ̇

r
− (sin θ cos θ)φ̇2 = 0 (24)

θ̈ +
2ṙθ̇

r
+ 2(cot θ)θ̇φ̇ = 0 (25)

where ṙ = dr/dτ and N ′ = dN/dr.
Now we assume that orbit is in the θ = π/2

plane. So, initially θ̇ = 0 and equation (24)
yields θ̈ = 0 This means that the orbit remains
in this plane. Further equations (22) and (25)
lead to

φ̇ = A/r2 (26)

and

ṫ = Be−N (27)

where A and B are constants. As pointed out
earlier, the equation (21) is the first integral, we
take it and ignore equation (23). Therefore

eN ṫ2 − eLṙ2 − r2θ̇2 − r2 sin2θφ̇2 = 1 (28)

which with θ = π/2 and θ̇ = 0 gives

B2

eN
− ṙ

2

e−L
− A

2

r2
= 1 (29)

by virtue of equations (26) and (27). Now,
changing r = 1/u and making use of equation
(15), the equation (29) reduces to

d2 u

dφ2
+ u− GM

A2
− 3GMu2 − Φ(u) = 0 (30)

where

Φ(u) =

{

(1 +A2u2)
d

dφ
[u

∫

Φ(u)

u4
du]

+u

∫

Φ(u)

u4
du

}

/2A2 du

dφ
(31)

This is a second order differential equation
for the orbit. Here it is interesting to recall that
corresponding orbital equation in Newtonian
theory is

du2

dφ2
+ u− GM

A2
= 0 (32)

and the one in case of Schwartzschild metric
(Einstein theory) is

d2u

dφ2
+ u− GM

A2
− 3GMu2 = 0 (33)

Comparing equations (30) and (33) we get
an additional term in the orbital motion of the
planet in this theory of gravity. This is absent
in Einstein’s theory. However, it is very small
in magnitude.

CONCLUDING REMARKS

Assuming the Lagrangian approach is the cor-
rect way to treat f(R) theories, we have in-
vestigated the gravitational field surrounding a
spherically symmetric mass distribution and the
motion of a particle in this gravitational field.

In the former case the appearance of b0r
2/3

in space-time metric does not allow it to be
asymptotically flat when r approaches infinity.
Therefore, it behaves like a contribution that
comes from a cosmological constant. This is as
if Einstein theory is considered with cosmolog-
ical constant, that is, Rvu − (1/2)δvuR = −Λδvu,
where Λ is the cosmological constant. This
contribution is small. If 1/

√
b0 ≫ r ≫ GM ,

the metric (19) is nearly flat. The effect of
mass term M dominates for the values of r
below this range and the effect of this term,
b0r

2/3 dominates for the values of r above this
range. However, in this situation, the Newto-
nian potential gets modified to φ = −GM/r +
b0r

2/6. The second term here appears due to
the correction in the Hilbert Lagrangian, R.

It is interesting to look at the scalar curva-
ture in an f(R) theory of gravity. For instance,
equation (4) in vacuum and for n = 2 gives
trace 2R−R/6a2 = 0. This is a wave equation
and is comparable with massless scalar field
equation 2φ + Rφ/6 = 0. 2R is non-vanishing
for all values of n ≥ 2. This means that scalar
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curvature is of wave nature in f(R) theories of
gravitation.

In case f(R) is zero or constant, the met-
ric (15) will correspond to the Schwarzschild
solution of Einstein theory with or without
cosmological constant.

Now we consider the motion part. The
differential equation for the orbit in Einstein
theory differs from the corresponding orbital
equation of Newtonian theory by the term
3GMu2 and that of this f(R) theory differs from
the corresponding orbital equation of Einstein
theory by the term Φ(u). Thus the equation in
this theory differs from the Newtonian theory
by the terms 3GMu2 + Φ(u). The relativistic
correction to planetary motion is extremely
small. This can be seen by comparing second
and fourth terms in equation (30). These terms
differ by an order of GMu or GM/rc2 in c.g.s.
units. For Mercury GM/rc2 ≈ 3×10−8 because
M =M⊕ = 2× 1033 gm and r = 5.5× 1012 cm.

Since it is having the effect similar to that of
a cosmological constant the change in constant
GM/A2 in equation (30) is not producing any
interesting observable effect in planetary mo-
tion. However 3GMu2 is small compared to
other terms, it is sufficient to use the method
of successive approximation. We consider the
solution of Newtonian equation (32) as

u =
GM

A2
{1 + ǫ cos(φ− φ0)} (34)

where ǫ and φ are constants. Equation (34)
represents an ellipse with ǫ as eccentricity and
a perihelion located at φ = φ0. Replacing small
terms 3GMu2 by its Newtonian approximation
(34) we obtain:

d2 u

dφ2
+ u− GM

A2
− 3(GM)3

A4

− 6ǫ(GM)3

A4
cos(φ− φ0)

− 3(GM)3

A4
ǫ2 cos2(φ− φ0)− Φ̄ = 0 (35)

where

Φ̄ = Φ
GM

A2
[1 + ǫ cos(φ − φ0)] (36)

For a nearly circular orbit, ǫ is small. We
neglect the term proportional to ǫ2. The term
3(GM)3/A4 can also be neglected as it is pro-
portional to or equivalent to the change in the
constant GM/A2 and produces no observable
effects. Also Φ̄ can be ignored because:

Φ̄ ≈ Φ
GM

A2

+ φ′
GM

A2

[

− ǫGM
A2

cos(φ− φ0) +
GM

A2

]

(37)

The first term in (37) corresponds to the
changes in constant GM/A2 due to modified
theory other than that of Einstein and is of little
significance in observation. The second term in
(37) vanishes at the perihelion. Therefore, the
contributions from Φ̄ can be ignored. Thus, we
have

d2u

dφ2
+u−GM

A2
− 6ǫ(GM)3

A4
cos(φ−φ0) = 0 (38)

of which the solution is

u =
GM

A2
[1 + ǫ cos(φ − φ0)]

+
3ǫ(GM)3

A4
φ sin(φ− φ0) (39)

or it can be written as

u =
GM

A2

[

1 + ǫ cos{φ− φ0 − 3
G2M2

A2
φ}

]

(40)
Equation (40) represents a precessing elliptical
orbit. If φ changes by

∆φ = 2π

[

1− 3G2M2

A2

]−1

≈ 2π

[

1 +
3G2M2

A2

]

(41)

the arguments of cosine changes by 2π. This
shows that the angular distance between one
perihelion and the next is larger than 2π by
6πG2M2/A2. This quantity gives the angular
precession of the perihelion per revolution show-
ing that the perihelion advances ∆φ > 2π in the
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direction of motion. There is no further need to
proceed for approximation.

For a nearly circular orbit, equation (34)
gives GM/A2 = 1/r where r is the radius of the
orbit. The angular advance of the perihelion per
revolution in c.g.s. unit is 6πGM/rc2 (42)

Thus, in this f(R) theory of gravity observ-
able effects are similar to that of Einstein theory
as the term Φ(u) has nothing to contribute even
in successive approximations. Therefore, the
precession of the perihelion is consistence with
observation. One of the possible reasons for this
can be seen in the fact that in this choice of f(R),
the resulting field equation (4) is based only on
the scalar curvature and is not associated with
any other field like scalar field or meson field.

It is interesting to note that the precession
of the orbit can be quite large in case of close
binary star systems. For a system consisting
of two white dwarfs or two neutron stars of
mass 1M⊕ separated by a distance of 1011

cm, equation (42) gives a periastron advance of
3× 10−5 radians per revolution which means ≈
2◦per year.

We have considered a choice of f(R) as-
suming that Einstein general relativity is the
correct theory of gravity. On the contrary, if
f(R) theories are indeed able to explain the
accelerated expansion the right choice for the
function f(R) and how the variation has to
be performed (higher order metric or Palatini
approach) should be investigated. One can
expect that the functional expression of f(R) is
not changing during evolution of the universe,
even if R evolves with cosmic time. If this
is the case then f(R) theory should reproduce
the phenomenology we observe to day but also

give rise to an inflationary period in the early
universe. Then, the logarithmic Lagrangian
can be ignored because it does not predict any
inflationary period, whereas the choice f(R) =
βRn is able to explain inflation provided one
sets n = 2.
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