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Abstract 

In this article I provide a personal perspective on what Applied Mathematics is and why it is important.  
The academic discipline of Applied Mathematics sits somewhere between, and across, the academic 
discipline of Pure Mathematics and the pragmatism of applications. Much of the domain of Applied 
Mathematics is abstract and may not appear to be useful for real world applications.  However it is through 
such abstractions that new mathematics is created and the rich mapping between the physical universe and 
mathematics, which is necessary for applications, is advanced. 
 

Introduction 
Let me begin by conveying my sincere 
congratulations to Professor David Wilson 
for his very nice work in applying 
mathematics, which has been recognized by 
the Royal Society of New South Wales with 
the Edgeworth David Medal for 2013. 
 
In his invited discourse in this issue David 
provides a short critique of the academic 
discipline of Applied Mathematics.  In his 
view this discipline has diverged from the 
pursuit of applying mathematics to real 
world systems; becoming instead an activity 
of mathematical exploration that “does not 
advance, or provide insight into, the 
application and nor does it advance 
fundamental mathematical theory.”  David 
goes further by contrasting this with the 
academic discipline of Pure Mathematics.  
Here he says, there is “no deception about 
the uselessness of their complex theorems 
and mathematical research.”  David urges 
mathematical scientists, with interests in 
applications of mathematics, to reduce 
complexity in their analysis and to 
concentrate on providing clear and timely 
advice.  In illustration of his message he 
draws attention to Daniel Bernoulli’s 
seminal paper on mathematical 

epidemiology, a translation of which can be 
found in Blower (2004).  
 
I welcome the opportunity to provide a 
defence of the academic discipline of 
Applied Mathematics. 
 

An Apology1 
I do not fully agree with David’s description 
of the academic discipline of Applied 
Mathematics, but his observations are not 
entirely without justification.  There is a vast 
literature of Applied Mathematics that may 
be considered permutations, involutions 
and explorations of complex model 
equations that are often far removed from 
any real world applications.  There is also a 
significant literature that is more sharply 
focused on applications.  It is my strong 
view that the academic pursuit of Applied 
Mathematics, including mathematical 
explorations, is vitally important.  This 
academic pursuit enables the more practical 
pursuit of applying mathematics.  One 
might intercede here and say that it is Pure 
                                                        
1 The title is a variant of Godfrey Harold Hardy’s 1940 
essay “A Mathematician’s Apology”.  Readers of 
Hardy’s essay will observe that while he strongly 
defended Pure Mathematics he made rather 
disparaging remarks about Applied Mathematics. 
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Mathematics that enables the practical 
pursuit of applying mathematics. There is 
truth in this too; the kingdom needs a King 
and a Queen.  
 
In order to present a defence of the 
academic discipline of Applied Mathematics 
it is useful to attempt to define what it is 
that Applied Mathematicians do2.  There is 
no absolute definition that I am aware of, 
and in some ways a definition might be 
regarded as a philosophical position.  As 
context, for my definition, I consider an 
expanding universe of mathematics, created 
purely from imagination 3 , that exists in 
parallel with the physical universe that we 
inhabit and create.  Pure Mathematicians 
explore and extend the universe of 
mathematics, developing and imagining new 
vistas.  Applied Mathematicians build on 
and further develop the universe of 
mathematics to enable mathematics to be 
used to provide understanding, prediction 
and improvements, including technological 
developments, in the physical universe.  
Pure Mathematicians and Applied 
Mathematicians are of course both 
mathematicians and it is not possible to 
define an absolute boundary between them.  
Mathematical scientists who are applying 
mathematics to inform policy makers are 
dependent on structures created by both 
Pure Mathematicians and Applied 
Mathematicians.  The number of 
mathematical scientists has grown 
enormously over the past two centuries 

                                                        
2  Hardy posed the question “How do pure and 
applied mathematicians differ from one another?” and 
he immediately followed this with “This is a question 
which can be answered definitely and about which 
there is general agreement among mathematicians.”  
However he didn’t provide a direct answer to the 
question. 
3 There is no consensus on whether mathematics are 
created or discovered.  I have adopted a non-Platonist 
philosophical position on this. 

extending through the quantitative 
disciplines of economics, computer science, 
engineering, actuarial science, 
bioinformatics etc.  The number of Applied 
Mathematicians and Pure Mathematicians is 
small compared with the cohort of 
mathematical scientists applying 
mathematics. 
 
As an academic Applied Mathematician, I 
have never used my knowledge of 
mathematics to attempt to influence 
decision-making and hence my comments 
on this will be based on logic rather than 
experience.  It certainly makes sense to 
explain things simply, with simple analysis, 
if you are attempting to inform policy 
makers who are not very mathematically 
literate.  However this does not mean that 
the analysis itself should be simple.  With 
time constraints it makes sense to reduce 
explorations but it is also makes sense to be 
mindful of the well known aphorism, often 
attributed to Albert Einstein, “Everything 
should be made as simple as possible, but 
not simpler’’4.  There can be more than one 
model, and one set of analysis; one, which is 
a simplification to communicate the essence 
to policy makers, and another, which has 
sufficient mathematical complexity to 
convince mathematical scientists of its 
validity.  The schematic figure eight flight 
trajectories for the Apollo moon missions 
come to mind in this context, contrasted 
with the complicated mathematical 
calculation of the actual Earth-Moon-Earth 
trajectory of the spacecraft. The figure eight 

                                                        
4 When Einstein developed a mathematical model for 
general relativity he found it necessary to go beyond 
the mathematics of vector analysis and Euclidean 
geometry, and to use the mathematics of tensor 
analysis.  Tensor analysis was the mathematics that 
was needed to be able to describe the geometry of a 
four-dimensional space-time.  Tensor analysis would 
never have been an option without the mathematical 
explorations that developed it. 
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trajectory is a cartoon.  The moon is in 
motion relative to the position of the Earth 
and it is travelling about five times faster 
than the spacecraft when the spacecraft gets 
near the moon (Crenshaw, 2010). 
 
It is not difficult to find examples where 
simple analysis fails.  If you plot Olympic 
Gold Medal winning and Olympic Silver 
Medal winning 100-metre sprint times as a 
function of year, since 1896 you will find an 
approximate linear fit between Gold Medal 
winning times and the year, and a different 
linear fit between Silver Medal winning 
times and the year.  In each case the medal 
winning times decrease approximately 
linearly as a function of time, with the slope 
of the best fit for Silver Medal times being 
greater than the slope of the best fit for 
Gold Medal times.  Having different slopes 
means that the lines must cross over at 
some future point in time.  Naïve advice 
based on this simple analysis would then 
suggest that at some point in the future, 
Silver Medal athletes would be running 
faster than Gold Medal athletes in this 
event.  This conclusion is of course fanciful 
nonsense but it is not entirely a straw man 
argument.  A similar simple analysis, 
published in Nature (Tatem et al, 2004), led 
to the conclusion that women would have 
faster sprint times than men in the 100-
metres event in the 2156 Olympics. 
 
Those mathematical scientists involved in 
applying mathematics to advise policy 
makers should be prepared to embrace the 
most relevant mathematics in their 
modelling.  They should be prepared to 
engage in cutting edge mathematics, if 
needed, and they should be prepared to 
have dialogues with Applied 
Mathematicians and Pure Mathematicians.  
Daniel Bernoulli’s work on epidemiology 
followed this paradigm.  The aim of 

Bernoulli’s epidemiology paper (Blower, 
2004), published in 1766, was to find the 
increase in life expectancy of a newborn, if 
there was inoculation against smallpox.  His 
analysis might be considered simple for 
some practicing mathematicians today, but 
it was not simple at the time.  It was 
disputed by a contemporary of Bernoulli, 
the Applied Mathematician, D’Alembert 
(Dietz and Heesterbeck, 2002).  Daniel 
Bernoulli was by no means an ordinary 
mathematician.  He also had access to state 
of the art mathematical methods through 
contact with his uncle Jakob, and earlier, 
with his father Johann.  Daniel Bernoulli’s 
paper contained the first formulation of a 
mathematical model for the spread of an 
epidemic in terms of ordinary differential 
equations.  After some elegant analysis, 
Bernoulli reduced the mathematical model 
to a special type of differential equation that 
he could then solve using a method devised 
by his uncle, Jakob Bernoulli.  This special 
type of differential equation belongs to a 
class of differential equations now known as 
Bernoulli equations.  The development of 
methods of solution for that class of 
differential equations is a classic example of 
exploration in Applied Mathematics. 
 
The techniques for simple mathematical 
analysis do not spontaneously come into 
existence.  They follow earlier mathematical 
explorations. Sometime ago I used simple 
analysis to calculate the possibility of 
executing a fundamental surfing 
manoeuvre; dropping down the face of a 
wave, doing a bottom turn, and returning to 
the top of the wave before it breaks (Henry 
and Watt, 1998).  A slightly simpler problem 
of this type (the Brachistochrone Problem) was 
originally set as a challenge “to the most 
clever mathematicians in the world” by 
Johann Bernoulli in 1696.  Solutions were 
obtained by the giants in mathematics; Isaac 
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Newton, Gottfried Leibniz, Guillaume de 
L’Hopital, Jacob Bernoulli and Johann 
Bernoulli.  At the time their solutions might 
have appeared as complex explorations far 
removed from any significant real physical 
system – the shortest time path for a point 
like object to slide from rest without friction 
under the action of a constant force.  
However their Applied Mathematics 
explorations led to the formulation of the 
calculus of variations, and this is now a 
mainstay of all optimization problems 
where the object is to find a function that 
maximizes or minimizes some specified 
constraints. 
 
As a general principle it makes sense to 
reduce the complexity of the analysis if 
possible, especially if timely advice is 
important.  But it is also important to 
provide accurate advice, or at least to 
provide advice on the level of accuracy.  
David alludes to this but does not give it 
prominence; “even if the analyses are only 
around 70% complete or precise but are 
communicated clearly and through 
appropriate channels then they are likely to 
inform the decision-making”.  This 70% 
idea is like the Pareto 80/20 principle for 
time management, which roughly states that 
for many situations 80% of the complete or 
precise result may be obtained from 20% of 
the effort needed to get the complete or 
precise result.  This can guide time 
allocation but in providing advice the 
accuracy of the advice should play a 
prominent role.  The advice should contain 
reliability estimates. This may necessitate 
going beyond simple analysis. 
 
The Global Financial Crisis of 2007, 2008, 
brought the importance of accurate advice 
into sharp focus.  It is generally accepted 
that a major contributor to this crisis was 
inaccurate advice from financial advisors 

who did not properly understand risk (Taleb 
& Martin, 2012).  Some of this inaccurate 
advice was based on a formula that was 
derived from the simplifying assumption 
that the price of Credit Default Swaps was 
correlated with the price of mortgage-
backed securities (Salmon, 2009).  The 
formula was popular because it could 
deliver quick and decisive advice but the 
simplifying assumption was flawed.  
 
It may be possible to go beyond simple 
analysis and still provide clear and timely 
advice that is far more reliable than simple 
analysis could provide.  This is the case in 
modern weather forecasting.  An example 
of simple analysis in this context is the 
persistence model for weather forecasting.  
This model predicts that tomorrow’s 
weather will be the same as today’s weather.  
Modern weather forecasting is not simple 
analysis, but it can be done in a timely 
fashion to provide clear and accurate advice.  
It evolved to this level of sophistication 
after two hundred years of Applied 
Mathematics explorations in partial 
differential equations, nonlinear dynamics 
and computational mathematics. 
 
Applied Mathematics is the mapping, and 
further development, connecting and 
extending mathematics with the physical 
universe, including the creation of new 
technologies.  This definition connects a 
little with Galileo’s view that the universe is 
like a grand book, written in the language of 
mathematics.  Galileo remarks that “it is 
humanely impossible to comprehend a 
single word” “until we have learnt the 
language and become familiar with the 
characters in which it is written”. In this 
context, Pure Mathematics could be 
construed as the language of the universe 
with Applied Mathematics playing the role 
of an interpreter and an author, enabling the 
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physical universe to be understood and 
extended through new technologies.  As an 
example, the discovery or invention of 
natural numbers could be considered as 
Pure Mathematics.  The discovery and 
development of natural numbers for the 
purpose of counting and ordering could be 
considered as Applied Mathematics.  Using 
natural numbers for counting and ordering 
could be considered as applying 
mathematics.  I am not suggesting that this 
is historically how things evolved in this 
example.  It is almost certainly true that 
counting preceded the creation, or was the 
creation of natural numbers.  The marks on 
the Ishango bone5, believed to be 20,000 
years old, may be one of the earliest 
examples of a counting system.  Prime 
numbers, the fundamental theorem of 
arithmetic, and the prime number theorem 
are in the domain of Pure Mathematics, but 
the creation of public key encryption 
methods based on prime numbers is 
Applied Mathematics.  Applying 
mathematics to the security of Internet 
financial transactions is dependent on such 
methods. 
 
In general, discoveries or inventions in Pure 
Mathematics lead to discoveries and 
inventions in Applied Mathematics and vice 
versa.  The fundamental elements of 
calculus, derivatives and integrals, may be 
considered as the domain of Pure 
Mathematics but the discovery and 
development of calculus to describe rates of 
change in real world phenomena is Applied 
Mathematics.  Again there is no definitive 
boundary but this can be used as a guide.  
In this case we might consider Leibniz’s 
calculus as Pure Mathematics and Newton’s 
calculus as Applied Mathematics.  Some 
historians have argued that much of what 
we would regard as Pure Mathematics 
                                                        
5 http://en.wikipedia.org/wiki/Ishango_bone 

evolved out of Applied Mathematics 
through the 19th and 20th centuries (Maddy, 
2008). 
 
As a further example, the Navier-Stokes 
partial differential equations, which were 
developed by Claude-Louis Navier in 1822 
and George Gabriel Stokes in 1854 are 
fundamental to all modern weather 
forecasting models.  Their study, 
development, and implementation in this 
context is Applied Mathematics.  However 
the determination of whether or not 
smooth solutions always exist for these 
equations in three-dimensions is currently 
an open problem in Pure Mathematics6 .  
Weather forecasts by any of the myriad 
providers are examples of applying 
mathematics. 
 
As a final example, let me discuss an area of 
current interest in Applied Mathematics that 
I am somewhat familiar with.  This is the 
area of fractional calculus.  The history of 
fractional calculus in Pure Mathematics goes 
back to the foundations of calculus more 
than three hundred years ago.  One of the 
founders of Calculus, Gottfried Leibniz, in a 
letter to Guillaume de L'Hôpital in 1695 
posed the question (Miller and Ross, 1993): 
“Can the meaning of derivatives with integer order 
be generalized to derivatives with non-integer 
orders?”  At the time, L'Hôpital was writing 
the first textbook on calculus7.  Many Pure 
Mathematicians became interested in this 
problem and developed expressions for 
fractional derivatives and fractional 
integrals.  The fractional calculus first 
appeared in Applied Mathematics when 
                                                        
6 This is one the seven Millennium Prize Problems 
established by the Clay Mathematics Institute in 2000 
as an important classic question whose solution 
deserves a million dollar prize. 
7 Analyse des Infiniment Petits pour l'Intelligence des Lignes 
Courbes (Analysis of the infinitely small to understand curves) 
(1696). 
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Niels Abel made mention of it in his 1823 
paper on the Tautochrone Problem.  This 
problem was to find the curve for which the 
time taken for a point like object to slide 
from rest, under the influence of gravity, 
and without friction, to reach the lowest 
point is independent of the starting point.  
The optimal curve is a cycloid, which is also 
the solution to the Brachistochrone Problem. 
 
It is only in recent decades that fractional 
calculus has started to have a significant 
impact in Applied Mathematics.  The 
motivation for this interest has its origins in 
many physical and biological experiments 
that reported diffusion of particles some 
orders of magnitude slower than that 
anticipated by Albert Einstein’s Theory of 
Brownian Motion.  A reconsideration of 
diffusion, derived from the mathematics of 
continuous time random walks, and taking 
into account the effects of particle trapping 
and obstacles, has led to the creation of new 
mathematical models of diffusion, including 
new diffusion equations with fractional 
order temporal derivatives.  The new 
models, which can provide a better fit to 
data, have stimulated a lot of explorations in 
Applied Mathematics.  These explorations 
are now starting to flow back to Pure 
Mathematics. 
 
Most mathematical biologists seeking to 
apply mathematics to problems of diffusion 
are not yet equipped to venture far beyond 
Einstein’s model of Brownian motion.  It 
may be sometime yet before the fractional 
calculus enters the domain of what any 
applied practitioner might regard as simple 
analysis.  However, without the pursuits of 
Pure Mathematics and Applied 
Mathematics it never could.  There is 
currently a lot of exploration in Applied 
Mathematics developing fractional calculus 
models with only tenuous links back to any 

real world system.  Some of this, on its own, 
indeed most of it, may well turn out to be 
useless.  But it is this overall level of activity 
that produces a breeding ground that is 
necessary for creating new, and potentially 
useful, results.  This activity also provides a 
platform to train the next generation of 
scientists who will be able to incorporate 
newly created methods into possible simple 
analysis in a multidisciplinary setting. 
 
Related to the example above, I would like 
to mention in passing that it is generally the 
case among tertiary education providers 
around the world to provide less 
mathematics training for students in the 
biological sciences than those in the physical 
sciences and engineering.  This should not 
be the case.  We should not limit those 
applying mathematics in the biological 
sciences to a handful of tools enabling 
simple analysis. 
 
We live in challenging times.  The human 
population of more than seven billion is 
altering its global environment and climate; 
the well-being of our economic and 
financial systems is largely predicated on 
future growth that is unsustainable; our 
global connectedness through airline 
networks, and internet networks, make us 
vulnerable to global shocks; the demands 
on our medical systems and transport 
systems is exceeding capacity; the 
emergence of terrorism on a global scale 
poses enormous threats to security.  
Meeting these challenges will require 
intellectual advances from science, 
medicine, engineering, finance and business. 
 
One of the global tasks of mathematicians is 
to extend the universe of mathematics and 
to provide the mathematical training that 
will help to underpin and enable these 
challenges to be met. Mathematics is not 
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static.  It is not something that we have and 
know in its entirety.  It is something that is 
evolving.  It is created by Pure 
Mathematicians and by Applied 
Mathematicians through explorations.  The 
activities in our world are increasingly being 
underpinned by mathematics, and decision 
makers are increasingly reliant on advice 
that is underpinned by mathematics.  There 
is no doubt that clear and timely advice, 
based on accurate and uncomplicated 
mathematical analysis, will be valuable and 
sought after.  But so will the fruits of 
mathematical explorations, offering 
methods of analysis and prediction not yet 
imagined.  
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