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Abstract 
The aim of this paper is to examine some of the issues relating to the fast developing technology of 
engineering simulation.  While simulation has long played a part in human exploration of the physical and 
even philosophical ideas it is only with the relatively recent innovation of cheap computing power and 
software development that it has become a significant engineering tool.  A brief introduction into the origin 
of physics based simulation is provided and then two specific areas of research are explored.  The 
distinction between mathematical modelling and simulation is also addressed as both are often used 
inappropriately.  The first specific area of research explored details of how deterministic chaos problems 
can be handled, particularly relating to harm minimisation in helicopter crashes, this shows how data with 
very little if any statistically based relationships can still provide useful design information.  The second 
study relates to Self-Organised Swarms and how the individual agents can be modified to generate useful 
emergent behaviour.  The modification is based on processes drawn from nature in particular evolution and 
learning from experience.  The last part of the paper deals with philosophical issues which are becoming 
more challenging as the technology matures and Virtual Reality technology becomes widely available. 
 

 

Introduction 
The construction of imaginary worlds seems 
to have been a practice that dates back to pre-
history.  There have been three distinct uses 
in the broadest sense in which this human 
construct was deployed to further human 
evolution.  These three have, however, always 
overlapped in a rather confusing manner.  
The first of these and the main subject of this 
paper was to use this imaginary or virtual 
world as a space to practice skills and tactics 
which could then be used in the real world.  
For this to succeed it is essential the generated 
world exhibits the same features and physics 
as the real world. 
 

 The difficulty in the early simulations, often 
war or hunting games for strategy 
development and training, as today, was to 
ensure that the participants took it seriously.  
This need and difficulty is demonstrated by 
the challenge set by Ho Lo to Sun Tzu, and 
related by him in The Art of War about 500 
BCE, to train his concubines in military drill 
(Butler-Bowdon 2010).  He made the King of 
Wu’s favourite concubines company 
commanders, over the other women of the 
court, and when they failed to take their role 
in the enactment seriously be-headed them. 
This, we are told, led to the replacements 
taking their roles very seriously. 
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The second use of imaginary worlds in early 
history was in the form of games.  Games 
have not only been used as a form of 
entertainment but also as generating a space 
where behavioural experiments can be carried 
out with limited risk.  The board game 
Chaturranga which was a predecessor of 
Chess is not really an early simulation, despite 
some claims to the contrary, as it makes no 
attempt to mimic the real world.  It may still, 
however, be seen as having value in 
developing strategic thinking.  This trend 
continues into modern computer games 
where participates can have superhuman 
capabilities and many lives. 
 
The third use of imaginary worlds that can be 
traced from pre-history until today is in a 
sense the hardest to categorise.  This where 
the virtual world becomes a cultural construct 
in for example drama, dance, religions etc. 
 
All three of these categories of activities 
require the participants, and often an 
audience, to suspend belief and enter a world 
they know to be not real.  This is as true for 
the Captain of an Airbus 380 simulator as it is 
for the teenager playing shooter games in the 
bedroom or the actor playing Hamlet and his 
audience.  In this sense the human behaviour 
is common but the intended outcomes are 
very different. 
 

Engineering Simulation 

It is quite difficult to define when simulation 
became a practical tool in the technologies.  
Many observers regard the Link Trainer as 
the first manifestation of a technical 
simulator. 
 

 
Figure 1: The Link Trainer 
 
The link trainer was a pilot trainer developed 
in the 1930s.  It was credited with increasing 
the speed with which allied pilots could be 
trained in WW11 and certainly reduced the 
risks involved.  While it is undoubtedly the 
precursor of modern flight simulators it was 
really more a procedural trainer than a true 
simulator.  Training simulators, particularly 
flight simulators but also maintenance, and 
management simulators drove the technology 
up to a decade ago and still training in its 
many applications dominates the market. 
 

Computer based simulation 

The first computer based engineering 
simulators used analogue computers.  The 
simple reason for this is that dynamic 
simulation involves the ability to integrate 
between acceleration and velocity and again 
between velocity and displacement.  While 
analogue computers are well suited to 
integration digital computers are not and have 
to depend on numerical approximation.  In 
order to provide sufficient accuracy a 
considerable amount of calculation is 
required, a limitation on computers of the 
day, and to provide a realistic flight 
experience this has to be accomplished in real 
time.  Despite this disadvantage it was 
obvious that the development of analogue 
based flight simulators was restricted both by 
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their inherent unreliability and difficulty in 
programming.  
 
The first reliable easily programmed digital 
flight simulators were ‘mimics’ (Page et al. 
2006).  The flight performance from a real 
flight case is recorded and then accessed as 
appropriate from look-up tables.  This is a 
very efficient method for generating a flight 
simulator but does not involve any physics 
and is only applicable when operating within 
previously recorded events.  This is still an 
approach that is often used particularly when 
a high fidelity is required that would involve a 
requirement for an unacceptably high 
computing capacity. 
 
One common mistake in the application of 
these type simulators is to expect them to 
generate useful information in areas outside 
those built into the response.  For example 
they have been wrongly used to investigate 
aircraft accidents but as the stored data 
cannot contain non-repeatable flight cases the 
results are often meaningless. 
 
These ‘mimic’ type simulators still have many 
applications particularly within the training 
area.  Their main advantage is that they 
present a closed ended teaching situation.  
That is to say a given action always leads to 
the same reaction.  Thus the trainee can be 
rehearsed in a particular set of behaviours 
which lead to a successful outcome.  This 
works well, from the trainer’s point of view, 
in situations where the aim is to attempt to 
get the trainee to respond in a proscribed way 
to a particular stimulus and has thus found 
many applications in Military and Health and 
Safety training (Mitra et al. 2013). 
 

  
Figure 2:  An immersive mining engineering simulation 
at the University of New South Wales.  
 
Figure 2 shows a highly advanced training 
simulator of this type that is used both to 
provide simulated underground experience to 
mining engineering students and demonstrate 
OH&S issues. 
 
In recent times simulators have started to be 
introduced that use physics engines to 
generate the environment and behaviour.  
This has opened up whole new fields in this 
area of technology.  It is now possible, and 
commonplace, to fly an aircraft or drive a car 
in a virtual space at an early stage of its design 
(Ahmed et al. 2007).  This means that the 
handling and performance can be provided to 
the design team as they develop their design.  
Nor is this limited to artefacts, a factory can 
be simulated at an early stage of conception 
complete with the human interactions.  They 
behave, however, very differently from the 
older ‘mimic’ type simulators as they attempt 
to capture the real variability associated with a 
real artefact or process.  Their fidelity is 
however limited as they need to operate in 
real time making processing speed a critical 
limitation.  In training they provide an open-
ended solution meaning that the result of a 
given action is to some extent unpredictable.  
This presents challenges to trainers they are 
not always prepared to accept. 
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Simulation as against modelling 

The difference between modelling and 
simulation is not easy to define though many 
attempts have been made.  These have tended 
to revolve around the assumption of a basic 
temporal nature of simulation but this is not 
satisfactory.  In most cases when referring to 
modelling there is the assumption that 
mathematical modelling is under 
consideration.  In a mathematical model an 
attempt is made to relate physical phenomena 
via mathematical logic.  This means that there 
is no physical relationship involved.  In an 
experimental model an attempt is made to 
use, a usually, simplified physical model to 
predict the behaviour of the more complex 
phenomena under consideration.  Simulation 
lies somewhere between these two methods 
where the individual processes within the 
simulation attempt to copy the real physical 
relationships.  What this means in practice is 
that a mathematical model, as long as 
properly constructed can produce a precise 
solution but not a necessarily accurate one.  
On the other hand simulation lends itself to 
predictions that are accurate but not precise.  
In practice it is impossible in any reasonably 
complex simulation to obtain the precise 
solution, which means true optimisation is 
impossible, and thus the methods selected 
should reflect the desired outcome (Page et al. 
2013). 
 

Examples of simulation research 
There is a great deal of research being 
undertaken using this relatively new 
simulation technology but in this section we 
will address only two that my research group 
is involved in. 
 

Complexity 

Complex problems present particular 
difficulties from the point of view of 
prediction which is the major requirement of 

engineering analysis.  There are two distinct 
types of these problems but both lead to a 
chaotic solution.  The simpler of the two 
leads to a chaotic solution but one in which 
the results have a statistical relationship to 
each other.  Such problems are often referred 
to as statistically chaotic problems and there 
are a range of methods for solving them.  In 
the second class of these problems there is no 
or at best a very weak statistical relationships 
between the one result and another.  That is 
to say the past history of results does not 
allow future results to be predicted.  A simple 
case of this, with only two possible sensible 
outcomes, is the tossing of a coin.  No matter 
how many times it has been tossed and the 
history recorded the likely next result remains 
just as unpredictable.  These problems, 
particularly when more variables are involved, 
are called deterministically chaotic problems 
because although the process between input 
and output is deterministic a solution cannot 
be predicted with any degree of certainty.  
Such problems lend themselves to a 
simulation solution due to its ability to predict 
accurately.  That is to say any generated 
solution will be a possible solution but not 
necessarily the one seen in the real world. 
 
An important problem in aerospace 
engineering is the protection of the occupants 
of a vehicle in the event of a crash.  
Helicopters, in particular, present the designer 
with major problems.  It is possible to 
mitigate possible injuries but that depends on 
an accurate predictions of the loads applied to 
the occupants which in turn depends on the 
impact loads on the aircraft (Pearce et al. 
2011, Pei et al. 2014). 
 
While it is not possible to predict the load in 
any particular case it is possible to fly a flight 
simulator a large number of times and record 
the results. 
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Figure 3.  The results of a number of simulations of 
the impact of a helicopter after engine failure (Pei et al. 
2014). 
 
The red points are impacts resulting from 
engine failures within the area of the flight 
envelope that are believed to lead to serious 
harm while the conditions leading to the blue 
points are deemed less hazardous.  It is not 
possible to find a relationship between the 
initial conditions and the resulting impact 
velocities but the data does indicate that there 
are different zones of results.  This gives 
some basis for confidence in the aircraft’s 
safety envelope. 

 
Figure 4. A typical flight safety envelope for a light 
helicopter (Pei et al. 2014). 

 
The double hatched area is regarded as the 
values for airspeed and altitude above ground 
level (AGR) where serious injury is most 
likely to occur after an engine failure.  It 
should be noted the worst condition is when 
flying low and slow that part of the plot being 
known colloquially as ‘coffin corner’. 
 
The six initial conditions marked as red spots 
are within the area of the flight envelope 
regarded as unsafe and lead to the generation 
of the cloud of red points in Figure 3.  While 
the blue spots are taken from the less critical 
region giving rise to the cloud of blue points. 
 
Though the points cannot be directly used for 
structural load predictions for the helicopter 
due to any one result being as likely as any 
other the information can still be used.  It 
should also be noted that any additional tests 
will result in more points located somewhere 
within the cloud though their actual location 
is not predictable.  The space which they 
occupy is, however, significant as any real 
crash should generate points within this 
space. 
 

 
Figure 5.  An arbitrary set of points. 
 
Figure 5 shows an arbitrary set of points 
plotted on three axes.  The result is they 
occupy a three dimensional area of space 
which can be bounded. 
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Figure 6.  A complex hull. 
 
Figure 6 shows a complex hull constructed so 
as to form the minimum space encompassing 
all the points.  The Convex Hull Algorithm 
defines a space within which any real crash 
should occur.  This space can then be 
searched to identify loads and accelerations 
that might occur in any real crash. This space 
can be pseudo-stochastically searched to find 
data that can then be used to minimise the 
risk of harm to the helicopter occupants, by 
design or operational modifications.  
 

Cognitive Relationships 

Distributed logic systems offer huge potential 
advantages.  They are far more rugged than 
centralised systems and, if properly designed, 
can respond to environmental change much 
more rapidly.  One of the main problems is 
that they can generate unexpected emergent 
behaviour.  This can of course be a great 
benefit if the behaviour generated has a 
positive effect on the mission and thus there 
are currently significant efforts to predict it.  
Like the chaos problem, this is very hard to 
investigate with a mathematical model and 
may result in unexpected harm if a physical 
model is used. 
 
One sub-set of these types of systems are 
swarms and particularly self-organising 
swarms.  Craig Reynolds is often seen as the 
first researcher to really address this problem 
with his BOIDS (Reynolds, 1987).  He was 

able to program agents with just three rules 
that resulted in complex behavior such as 
flocking and shoaling.  This approach has 
now found applications ranging from 
power generation and distribution through 
industrial management to unmanned aerial 
systems. 
 

 
Figure 7.  A sea search using self-organising UAVs 
and a probabilistic algorithm (Sammons 2011). 
 
As the initial condition and the environmental 
conditions, in a marine search, will change 
each time a search is undertaken the pattern 
of the response will vary as will the exact 
tracks taken by the agents which are thus not 
predictable. 
 
Another proposed use of this technology, we 
have investigated, is in the managing of a 
swarm of spacecraft.  There are some real 
advantages to launching and operating a 
system based on a number of simple 
spacecraft rather than one very complex 
vehicle.  The disadvantage, is however that 
like all spacecraft, the system’s life depends of 
the time before the fuel is exhausted.  It is 
thus important that each agent within the 
cluster operates such that the swarm remains 
sound as long as possible if necessary at the 
expense of an individual agent. 
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Figure 8.  A swarm of spacecraft plotted on a plane 
(Page et al. 2014). 
 
As each of these spacecraft is orbiting the 
earth at the same speed, same altitude, but on 
a different track the swarm will rotate each 
orbit.  Due to disturbances each vehicle will 
have to use some thrust to fine tune its 
location.  This will in general result in the 
outer members of the swarm using 
proportionally more fuel that those at the 
centre.  The mission will be regarded as 
complete when sufficient vehicles have 
exhausted their fuel that the swarm can no 
longer carry out its mission.  One solution to 
this problem is to initiate the mission with 
different fuel capacities in each agent so all 
the fuel is exhausted at the same time.  This 
is, however, rather problematic as it depends 
on accurate predictions of the perturbations 
the individuals within swarm are likely to 
encounter.  An alternative procedure is for 
each agent to construct a projected fuel cost 
map and adjust its behaviour to maximise the 
useful life of the swarm. 
 

 
Figure 9.  A projected fuel map of a satellite swarm 
(Page et al. 2014). 
 
Each individual agent can now either change 
its location within the swarm to reduce or 
increase its projected fuel use to correspond 
to its colleagues or sacrifice itself by staying in 
a high fuel area to prolong the mission in a 
degraded form.  This is a dynamic map based 
on each agent knowing the fuel state and 
location of the others.  As each decision is 
enacted or perturbation occurs, the 
environment changes thus changing the 
individual agents behaviour and thus that of 
the swarm. 
 

Initial Rule Selection 

There is an inherent weakness in this swarm 
approach and that is that to initiate the 
behaviour a set of rules has to be selected.  As 
the behaviour that will emerge is 
unpredictable at best, the rules that have such 
a profound effect on the swarm are really 
only a calculated guess. 
 
One solution to this is to allow the individual 
agents to develop their own rules.  There are 
two sources of the rules that lead to the 
collective behaviour of the swarm.  The first 
is related to the physical properties of the 
agents and can be seen as analogous to nature 
while the other relates to the much more 
nebulous control laws that can be seen as 
analogous to nurture. 
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The first of these can be treated as a simple 
rule set that can be modified to improve the 
swarm behaviour by using evolutionary 
methods as in the case of a biological system.  
A set of plausible rules are set determining the 
physical behaviour of the individual agent.  
The simulation is then run a number of times 
and the emergent behaviour is recorded, the 
rules are then evolved by breeding the most 
successful agents (Price et al. 2006, 
Stonedahl et al. 2008). 
 
There are two types of swarms we have 
investigated; homogeneous, where all the 
agents are identical and heterogeneous, where 
each individual is significantly different.  The 
former is relatively easy to evolve as the 
improvement can be easily followed.  
 

 
Figure 10.  Homogeneous swarm chromosome coding 
(Tzi-Chieh Chi et al. 2014). 
 
As can be seen the genetic makeup of a 
heterogeneous agent is rather more 
complicated. 

 
Figure 11.  Heterogeneous Swarm Chromosome 
Coding (Tzi-Chieh Chi et al. 2014). 
 
In practice while it is relatively easy to show 
the improvement in evolving rather that 
arbitrarily choosing as set of rules for a 
homogeneous swarm we have yet to achieve 
this for a heterogeneous one. 
 

 
Figure 12.  Simulation of homogenous swarm 
evolution to success (Tzi-Chieh et al. 2014). 
 
Figure 12 clearly shows how the 
improvement increases up to about 
generation 33 after which there is no further 
improvement.  It is expected that a 
heterogeneous swarm will perform better 
overall as it can take advantage of ‘wisdom of 
crowds’ but this is yet to be demonstrated 
(Galton 1907, Surowiecki 2004). 
 
For the control, nurture, part of the problem 
improving fitness for purpose involves the 
agents learning from past events (O’Neil et al. 
2014).  The method adopted was to utilize 
neural networks.  When these are combined 
with the physical mutations a somewhat 
complex picture emerges. 
 

 
Figure 13.  A typical fitness plot (O’Neil et al. 2014). 
 
As can clearly be seen from the plot (Fig. 13) 
there are instances where the swarm loses 
fitness while the overall trajectory is toward 
improvement.  There is also much greater 
scatter in the results for later generations.  In 
practice one would not expect to go far 
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beyond the 250th generation.  At this point 
the improvement tends to level off.  A deeper 
understanding of these phenomena will be 
generated by further research. 
 

Metaphysics and simulation 
Any new technology offers the possibility of 
providing the answer to everything.  These 
phenomena can be clearly seen as a response 
to Newton’s Mechanics, the early 
understanding of thermodynamics and again 
replayed in the early response to computers.  
From the simulation point of view it can be 
clearly dated from the publication of Nick 
Bostrom’s paper in the Philosophical 
Quarterly in 2003 (Bostrom 2003).  His thesis 
was very simple and quite compelling.  
Sophisticated simulation has now been 
available for about thirty years and has started 
to be combined with Virtual Reality capability 
for the last decade.  Full computer based 
immersion is still quite crude but is improving 
rapidly and is already providing competition 
for simulators that combine real and virtual 
environments.  In the most sophisticated of 
these, possibly the combat flight simulators, 
the participants express many of the physical 
and mental responses they would in a real 
combat aircraft.  In other words they have 
completely, or nearly completely, entered an 
imaginary world.  While we cannot yet get 
that degree of fidelity in an exclusively 
computer generated type virtual environment 
most researchers active in the field believe it 
will be achieved, the only dispute being how 
long.  So when we can generate a virtual 
world which we cannot distinguish from the 
real world we will be expected to generate a 
large number of them.  Nick Bostrom 
contends as their will be a multitude of 
simulated worlds as against one real one and 
an individual cannot distinguish between 
them the probability is we are all living in a 
virtual world.  This is of course not far 
removed from Plato’s Cave (Plato 360 BCE). 

 
This proposition has generated a number of 
interesting ideas.  The first criticism is that a 
virtual model of everything would require the 
same information as sustains reality which 
would of course be impossible.  This 
argument fails due to the simple fact that one 
does not have to simulate everything only 
those parts one interfaces with.  A simulator 
for an Airbus A380 does not have to model 
Paris when it leaves Sydney to fly there.  In 
fact a simulated Paris only comes into 
existence when it is needed to provide realism 
to the simulation by which time the simulated 
Sydney no longer exists.  The basic idea that 
observation causes existence and the state of 
that existence is hard to grapple with outside 
quantum mechanics where physicists appear 
to have no difficulty. 
 
Another challenge this philosophical view 
raises is the topic of both space and time.  
Already, though the fidelity is not yet high I 
can cross my office and sit by a roaring fire in 
Tuscany.  I can just as easily stand and watch 
the building of the pyramids in ancient Egypt.  
If the fidelity was such that to the observer it 
was impossible to distinguish these 
simulations from reality how is the experience 
different from physical or temporal travel? 
 
A number of physicists have tried to 
determine methods for establishing whether 
the world as we know it is simply a 
simulation.  One approach has been to look 
at the high energy cut off of the cosmic ray 
spectrum (Beane et al. 2012).  While they do 
not discount the possibility of the physical 
world being a simulation they don’t confirm it 
either.  They did raise the interesting prospect 
at the end of the paper that if this is a 
simulation then one day we may be able to 
make contact with The Simulator, a rather 
theistic suggestion. 
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One final interesting issue that is raised by 
this area of enquiry.  The apparent three 
dimensional spaces in the virtual simulation, 
are generated by a single string of code.  This 
implies that we can generate three 
dimensional space from a one dimensional bit 
string.  This of course provides a physical 
model for those physicists promoting concept 
of the digital universe (Zuse 1969). 
 

Future work 
As in any rapidly developing field there are 
almost too many research opportunities, 
which makes it hard to predict which will be 
the most fruitful areas to explore.  There are 
efforts to increase computing capacity but at 
this stage the problem is how the existing 
capability should be utilised.  The interfaces 
between the virtual world and a person in the 
real world is an area that seems to require a 
great deal of further development along with 
finding useful niches within technology where 
application of this capability will make a real 
difference.  What will delay the progress of 
this capability most dramatically is the lack of 
researchers working in the field. 
 

Conclusion 
The main thrust and aim of this paper is to 
provide an overview to the reader of some of 
the progress being achieved in this new field 
of technology.  It is drawing on the computer 
games industry and the arts to produce a 
useful tool but due to its newness the field is 
still confused.  By using solid examples 
related to real engineering problems an 
attempt has been made to show some of the 
future possibilities these capabilities will 
unlock. 
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